A study published in the online scientific journal PLoS Biology on October 27 with the provocative headline “Dams make no damn difference to salmon survival”[1] is now being questioned by a number of scientists, including several co-authors of the study.
According to the study, young fish running the gantlet of dams on the Snake and Columbia rivers did just as well as youngsters in an undammed river. Dams are widely regarded as one of the main reasons behind the sharp decline of salmon in North America’s western rivers and a study claiming that dams make no damn difference for salmon survival is therefore destined to receive a lot of attention from dam proponents and dam critics alike.
While a number of scientists, including several co-authors, are questioning the results and cautioning about what conclusions can really be drawn from them, lead-author David Welch stands by his report. “We’re not saying that the dams have never had an effect,” says Welch. “What we all have to ask ourselves is, if survival is up to the level of a river that doesn’t have dams, then what’s causing survival problems?”
Welch has already warned against overstating what the study proves, and continues to do so. According to Welch, the results of the study do however suggest that dams might not play such a big role in the fate of endangered Columbia River salmon today, and that the situation in the ocean – where the salmon live until it migrates upstream to spawn – is of higher importance than river conditions.
Michele DeHart, manager of the Fish Passage Center[2], strongly disagree with the conclusions drawn from the study. “There’s a huge mass of scientific literature that documents the impacts of dams. It’s just huge,” says DeHart. “It’s like saying, ‘Gosh, I just did this comparison and smoking does not cause cancer.’ Would you change your mind?”
In the study, the survival rate of young salmon and steelhead heading for the ocean (so called smolts) was measured in the rivers Columbia and Snake, which are heavily dammed, and in Fraser River, which has no dams at all. To the researchers’ surprise, the recorded survival rate was around 25 percent for all smolts, regardless of whether they travelled in dammed or undammed waters. If you take into account that smolt in the Columbia River actually have to travel a longer distance, it even looks as if smolt traversing dammed waters are doing better than their counterparts in the undammed Fraser.
Environmental groups are now claiming that comparing the different rivers with each other is like comparing apples and oranges, and co-author Carl Schreck, head of the Oregon Cooperative Fish and Wildlife Research Unit at Oregon State University, warns that the study could have failed to account for fish that die in the ocean due to the stress they have been subjected to while traversing dams in Columbia and Snake.
Ed Bowles, biologist and head of fisheries for the Oregon Department of Fish and Wildlife, says that it would be better to compare how similar fish, e.g. spring Chinook, do when they spawn in the same river – some above dams and some below.
[1] The authors of the study weren’t the ones who came up with the provocative “no damn difference”-heading. After lead author Welch found out about the headline, PLoS Biology withdrew its news release and issued a new one where the provocative headline had been removed.
[2] The Fish Passage Center is a government-funded agency that tracks and studies Columbia River fish.
Belgian and French scientist[1] have now described and named an African catfish sporting a striking pattern of irregular whitish lines and dots over a black background. The fish has been given the name Synodontis ngouniensis after its type locality, the Ngounié River drainage. The Ngounie River is the last and second most important tributary of the famous Ogowe River and flows through the country Gabon in west central Africa. The species can also be found in the Nyanga River drainage in Congo. (Nyanga is a smaller coastal river that runs through southern Gabon and northern Congo.)
The researchers collected Synodontis ngouniensis from a turbid part of the Ngounié River, where the temperature was 24°C (roughly 75°F) and the pH-value 8.4 (very alkaline).
Synodontis ngouniensis is a mochokid catfish. Its dorsal spine has a smooth anterior margin except for 1-4 feeble serrations that can be seen on the distal part. The species also has a maxillary barbel with a smooth membrane which is proximally at least as broad as the barbel thread and located on the posterior basal two third of the barbel. The fish is equipped with 12-19 mandibular teeth, 10-13 gill rakers on the ceratobranchial of the first branchial arch, and a triangular humeral process.
If you want to learn more, you can find the description of the fish in Ichthyological Exploration of Freshwaters 19[2].
This new species of mochokid catfish has long been confused with another similar species, Synodontis batesii, but has now been recognized as a species in its own right thanks to the work of researchers John Friel and John Sullivan. The new species has been given the name Synodontis woleuensis after the river Woleu and has is known to be present in the Woleu/Mbini/Uoro and Ntem basins of Gabon and Equatorial Guinea in west central Africa.
Synodontis woleuensis sports a dark background colour decorated with numerous small light spots of irregular shapes. A pair of light spots can be seen anterior and posterior to the adipose fin, and a narrow depigmented curved band runs along the anterior margin of the caudal fin. Another notable feature is the serrations on the anterior edge of the dorsal spine of the fish.
If you wish to learn more about this new species, you can find the description in the latest issue of Proceedings of the Academy of Natural Sciences of Philadelphia[3].
[1] Yves Fermon, Emmanuel Vreven, and David De Weirdt
[2] De Weirdt, D, E Vreven and Y Fermon (2008) Synodontis ngouniensis, new species (Siluriformes: Mochokidae) from the Ngounié and Nyanga basins, Gabon and Republic of Congo. Ichthyological Exploration of Freshwaters 19, pp. 121–128.
[3] Friel, JP & JP Sullivan (2008) Synodontis woleuensis (Siluriformes: Mochokidae), a new species of catfish from Gabon and Equatorial Guinea, Africa. Proceedings of the Academy of Natural Sciences of Philadelphia 157, pp. 3–12.
Reef building corals rely on herbivore animals to continuously remove unwanted algae growth from them, since algae compete with the corals for both sunlight and nutrients. Without regular cleaning, corals eventually die and the reef becomes overgrown by various types of algae. A report scheduled to be published this week in the early edition of the journal Proceedings of the National Academy of Sciences now suggests that having herbivore animals present on the reef isn’t enough; there must also be a proper balance between the various species. This conclusion results from a long-term study on coral reef recovery and seaweed[1] carried out by Dr. Mark Hay, the Harry and Linda Teasley Professor of Biology at the Georgia Institute of Technology, and his co-author Dr. Deron Burkepile who is now Assistant Professor at the Florida International University’s Marine Science Program.
Different fish feed on different algae and maintaining a proper balance may therefore be critical. “Of the many different fish that are part of coral ecosystems, there may be a small number of species that are really critical for keeping big seaweeds from over-growing and killing corals,” says Hay. “Our study shows that in addition to having enough herbivores, coral ecosystems also need the right mix of species to overcome the different defensive tactics of the seaweeds. This could offer one more approach to resource managers. If ecosystems were managed for critical mixes of herbivorous species, we might see more rapid recovery of the reefs.”
Coral reef
The 10 month long study was carried out 18 metres (60 feet) below the surface off the coast of Florida, where Hay and Burkepile placed 32 cages on a coral reef in November 2003. At this point, the coral reef area chosen by the researchers had only four to five percent live coral coverage. Each cage was roughly two metres square and one metre tall (1 metre = 3.3 feet) and the mesh was fine enough to prevent large fish from entering or leaving the cage. The scientists then carefully selected the number and type of fish to place in each cage, using the four following combinations:
· Two fish capable of eating hard, calcified plants
· Two fish capable of eating eat soft plants that defends themselves chemically
· Both types of fish.
· No fish at all
The two species used for the experiement where the Redband parrotfish (Sparisoma aurofrenatum) and the Ocean surgeonfish (Acanthurus bahianus).
As suspected, the type of fish turned out to play a key role in the growth of algae and seaweed on the reef.
“For the cages in which we mixed the two species of herbivores, the fish were able to remove much more of the upright seaweeds, and the corals in those areas increased in cover by more than 20 percent during ten months,” says Hay. “That is a dramatic rate of increase for a Caribbean reef.”
Areas with only one type of fish or no fish at all lost as much as 30 percent of their live coral coverage during the research, while areas with two species of fish increased their live coral coverage from four to five percent to six to seven percent.
“Species diversity is critically important, but we are losing critical components of the Earth’s ecosystem at an alarming rate,” says Hay. “There has been little work on the role of diversity among consumers and the effect that has on communities. This study will help add to our knowledge in this critical area.”
After the initial 10-month experiment, Hay and Burkepile launched a second study where the Ocean surgeonfish (Acanthurus bahianus) was substituted with Princess parrotfish (Scarus taeniopterus). Unfortunately, the cages only stayed on the reef for seven months before being wiped away by Hurricane Dennis in July 2005.
The research was conducted at the National Undersea Research Center in Key Largo, Florida and supported by the National Oceanic and Atmospheric Administration, the National Science Foundation and the Teasley Endowment at Georgia Tech.
You can read more about Hay’s and Burkepile’s work at
http://www.biology.gatech.edu/faculty/mark-hay/ http://www.biology.gatech.edu/faculty/mark-hay/lab.php
http://www.fiu.edu/~dburkepi/front.htm
http://www.fiu.edu/~dburkepi/research.htm
[1] Seaweed is a loose colloquial term encompassing macroscopic, multicellular, benthic marine algae.
A UK-Japan team equipped with remote-operated landers has now managed to film a shoal of Pseudoliparis amblystomopsis fish at a depth of 7.7 km (4.8 mi) in the Japan Trench, where the oceanic Pacific plate subducts beneath the continental Eurasian plate.
The deepest record for any fish – over 8 km / 5 mi – is held by the species Abyssobrotula galatheae, but this fish was never filmed or observed while it was alive; it was dredged from the bottom of the Puerto Rico Trench and already dead when it reached the surface.
The Pseudoliparis amblystomopsis film shows the fish darting around in the dark, scooping up shrimps. The shoal consists of no less than 17 specimens, with the largest ones being around 30 cm (12 in) in length.
“It was an honour to see these fish“, says Dr Alan Jamieson, Research Fellow at the University of Aberdeen, Scotland. “No-one has ever seen fish alive at these depths before – you just never know what you are going to see when you get down there.
The filming took place as a part of the Hadeep project; a collaboration between the Oceanlab at the University of Aberdeen and the Ocean Research Institute at the University of Tokyo. The aim of the project, which is funded by the Nippon Foundation and the Natural Environment Research Council, is to find out more about life in the very deepest parts of the world’s oceans.
Just like the unfortunate Abyssobrotula galatheae, deep sea fishes tend to be in a sad state when researchers examine them at the surface and this is one of the reasons why a film is such great news for anyone interested in learning more about what’s going on at these vast depts.
According to Professor Monty Priede, also from the University of Aberdeen, the team was surprised by the fish’s behaviour. “We certainly thought, deep down, fish would be relatively inactive, saving energy as much as possible, and so on,” says Priede. “But when you see the video, the fish are rushing around, feeding accurately, snapping at prey coming past.“
Oceanographers normally divide the deep sea into three different depth zones:
The Hadeep project has been looking at the creatures inhabiting the Hadal zone, which consists of comparatively narrow trenches in the wide abyss. In this environment there is no light and the pressure is immense. The food supply is also very limited, since photosynthesising organisms can not survive and most other creatures stay away as well. The animals living in the Hadal zone must therefore rely on food sinking down to them from more fruitful waters above.
In order to cope with pressure, Hadal dwellers display numerous physiological modifications, primarily at the molecular level. They have also developed various ways of dealing with the constant night and Pseudoliparis amblystomopsis is for instance equipped with vibration receptors on its snout which comes in handy when the fish navigates through the darkness and searches for food.
Dr Alan Jamieson now hopes that the Japan-UK team will find more fish during their next expedition down into the Haldal zone, which is planned to take place in March 2009 and aims to venture as far down as 9,000 m (30,000 ft).”Nobody has really been able to look at these depths before – I think we will see some fish living much deeper,” says Jamieson, whose deep-sea blog from the expedition can be found at Planet Earth Online.
You can also read more about this story over at deep sea news, a great blog if you want to keep up to date on deep sea discoveries.
In May this year, hundreds of Asian swamp eels were discovered in and around Silver Lake in historic Gibbsboro, New Jersey. This was the first finding in New Jersey, Asian swamp eelbut not the first finding in the United States. Unlike Florida, Georgia, and Hawaii – the three other U.S. states where this species have been discovered – New Jersey is however subjected to harsh winters and a breeding population of Asian swamp eels in New Jersey confirms the suspicion that this Asian invader has no problem adjusting to the
chilly climate of northern North America.
The Asian swamp eels were found by a local college student checking on frogs and turtles in the Silver Lake. As he spotted snake-like heads peeking from the water, he decided to photograph them and post the pictures online. This lead to the “snakes” being identified as Asian swamp eels, Monopterus albus, and prompted a call to the local authorities.
In its native environment in Asia and Australia, the swamp eel Monopterus albus inhabits gentle hill streams, estuaries and lowland wetlands, and it is a common species in rice paddies. It has developed a long row of traits that makes it an apt survivor in many different kinds of environments. Unfortunately, these traits also make it the “perfect” invasive species and biologists fear that the Asian swamp eel may wreck havoc with existing North American ecosystems, especially if the predatory species of these systems prefer to target familiar prey rather than catching the newcomers.
– The Asian swamp eel can survive long periods of drought by burrowing in moist earth, and can therefore take advantage of seasonally appearing, short-lived bodies of water.
– If its home becomes unsuitable, e.g. because of drought, this eel simply crawls ashore and make its way to a more suitable home by slithering over land, just like a snake. This makes it hard to eradicate from bodies of water using poison or similar; there is always the risk of at least two specimens getting away over land and forming a new breeding colony in nearby waters.
– The Asian swamp eel can tolerate a wide range of oxygen levels in the water since it is capable of absorbing oxygen from the air above the surface through its skin. This skill doesn’t only come in handy in oxygen depleted waters; it is also what makes it possible for the fish to travel impressive distances over land.
– This eel prefers freshwater habitats, but can tolerate brackish and saline conditions, which increases its chances of always finding a suitable home.
– It eats all sorts of prey, not only fish, crustaceans, amphibians, and other aquatic animals, but detritus (decaying organic matter) as well. Highly specialized feeders have a much harder time adjusting to new habitats and are therefore less likely to become problematic invasive species.
– This eel is a protandrous hermaphrodite, which means that it can change its sex. All specimens are born male, but can turn into females if necessary. This means that if an aquarist releases two male specimens into a lake, one of them can turn into a female to make reproduction possible.
In Georgia, the first specimens of Asian swamp eel was discovered in 1994, and three years later eels were found in Florida as well. The Hawaiian history of combating swamp eels is much longer as the first specimens are believed to have been released in Hawaiian waters about 100 years ago. In Georgia and New Jersey, biologists blame aquarists of having caused the situation by releasing their pets into the wild. In Florida and Hawaii however, Asian food markets and fish-farmers are considered more likely sources. Asian swamp eels are typically sold fresh in food markets and can be kept alive for long periods of time as long as their skin is kept moist.
New Jersey authorities are now focusing on containing the creatures while trying to figure out a way of annihilating them. “We’re not panicking yet,” says Lisa Barno, chief of the New Jersey Bureau of Freshwater Fisheries. “It’s more that it’s just an invasive species we’d rather not have. We’re still documenting the true extent of the problem, but right now it seems to be fairly contained.” One of the immediate goals is to prevent an expansion downstream to the Cooper River and a watershed leading to the Delaware River. Since May, only one Asian swamp eel has been discovered outside the Silver Lake.
According to Christian Agrillo, an experimental psychologist at the University of Padua in Italy, the North American mosquito fish can count up to four. This rudimentary mathematical ability makes it possible for the North American mosquito fish to count how many other fish that are nearby – but only up to four. Similar counting abilities have already been observed in dolphins, but until now researchers only new that fish could tell big shoals from small ones, not that they were able to actually count.
In earlier research, Agrillo and his colleagues found that a female specimen of the North American mosquito fish will swim to the largest nearby shoal to protect herself from a harassing male. In order to do so, she must of course be able to somehow tell the difference between a larger shoal and a smaller one.
To establish exactly how advanced the counting ability of the North American mosquito fish was, Agrillo et al continued their research by testing if a lone specimen would prefer to join a shoal consisting of 2, 3 or 4 other fish. The study showed that female fish could tell the difference between two shoals even when the shoal size differed by only one specimen. Females would significantly more often prefer to join a shoal consisting of four others rather than three, and would also favour shoals comprised of three fish rather than of two.
When a new series of experiments were conducted using even larger shoals, researchers found that the female North American mosquito fish were unable to directly count over four. If two shoals differed in size by a ratio of 2:1 she would go for the larger one, but if the difference was smaller she seemed to conclude that they were “both big”. She would for instance not favour a shoal consisting of 12 fish over a shoal of 8, but could clearly tell a shoal of 16 from a shoal of 8. The female North American mosquito fish therefore seems to have the ability to estimate larger numbers, but not very exactly.
The results of the study can be found on BBC’s site Loveearth.com