No, they don’t need to take showers! Bowhead whales apparently have the ability to sniff the air!
This discovery could drastically change our theories on how baleen whales find their food, as researchers now have a sneaking suspicion that the bowhead whales actually sniff out swarms of krill, their main food source.
This discovery was made when scientists hacked open the body of a bowhead whale and noticed that there was olfactory receptors which linked to the nose and the brain.
Up until now, it was thought that whales, along with dolphins, had no sense of smell.
Professor Hans Thewissen, a Cetacean expert from the Northeastern Ohio Universities College of Medicine, and colleagues based in Alaska and Japan, stumbled upon this discovery while taking a gander at the size of the brain in bowhead whales.
The whales were reeled in as a part of the biannual Inupiat subsistence hunt, and Professor Thewissen’s team was granted permission to take a gander at the brain cavities, to figure out how much of the brain actually filled up the brain casing.
“Upon taking a brain out, I noticed that there were olfactory tracts, which, in other mammals, connect the brain to the nose,” Professor Thewissen explained, “I followed those to the nose, and noted that all the olfactory hardware is there.”
This really caught the scientists off guard.
“At first glance, it would appear that whales would not have much use for smell, since everything they are interested in is below the water,” Professor Thewissen explained, “Olfaction is, by definition, the reception of airborne molecules.”
He went on to explain that in most cetacean species which have been put under the microscope to date, which have mainly been whales with teeth like dolphins, sperm whales and orcas, the hardware needed for them to be able to smell was absent.
“Based on this most people assumed that no whale had a sense of smell.”
With a little more digging and prodding, and some extensive tests, it was confirmed that the discovery that the bowhead can indeed smell, is accurate.
Bowhead whales exhibit a large and developed olfactory bulb, which seems to be very similar in structure to the hardware other animals have which can also smell.
It was also discovered by researchers that the bowheads also have functional olfactory receptor proteins, and this is one quality that toothed whales are lacking. These receptors are what provide the biochemical infrastructure for them to be able to smell.
“It is remarkable that this animal, which appears to have very little use for olfaction, retained that sense,” Professor Thewissen said. “We speculate that they are actually able to smell krill and may use this to locate their prey. Krill smells like boiled cabbage.”
Also, unlike most other species of whale, the bowhead actually have separate nostrils, which leads scientists to think that they may be able to not only smell, but determine from which direction the smell is coming.
I guess this means the next time you go bowhead whale watching, remember to wear your deodorant.
In an effort to end the country’s reliance on imported uranium, Dr Masao Tanada of the Japan Atomic Energy Agency has developed a fabric capable of absorbing uranium directly from seawater.
“At the moment, Japan has to rely on imports of uranium from Canada and Australia, but this technology could be commercially deployed in as little as five years,” says Tanada.
In Canada and Australia, the uranium is extracted in conventional mining operations which are expensive and damaging to the environment.
Dr Tanada is now hoping to secure funding to set up a 400 square mile underwater “uranium farm” consisting of anchored sponges made from the new material; a fabric composed primarily of irradiated polyethylene.
The world’s oceans contain an estimated 4.5 billion tons of uranium; roughly 3.3 parts per billion. Japan uses 8,000 tons of uranium per annum; an amount that Dr Tanada says could be harvested from the Kuroshio Current that flows along Japan’s eastern seaboard. His proposed 400 square mile farm would on its own supply Japan with roughly one-sixth of what it needs to run its nuclear power stations.
The famous Sharktooth Hill Bone Bed near Bakersfield has tantalized the imagination of scientists and laymen alike since it was first discovered in the 1850s. How did a six-to-20-inch-thick layer of fossil bones, gigantic shark teeth and turtle shells three times the size of today’s leatherbacks come to be?
Was this a killing ground for C. megalodon, a 40-foot long shark that roamed the seas until 1.5 million years ago? Perhaps a great catastrophe like a red tide or volcanic eruption led to animal mass-death in the region? Or is this simply the result of Sharktooth Hill being used as a breeding ground for generations of marine mammals throughout the millennia?
A research team consisting of palaeontologists from the United States and Canada are now offering their take on the Bone Bed, suggesting it is not the result of a sudden die-off or a certain predator. Instead, the North American team sees it as a 700,000-year record of normal life and death, kept free of sediment by unusual climatic conditions between 15 million and 16 million years ago.
The research team bases its hypothesis on a new and extensive study of the fossils and the geology of Sharktooth Hill. Roughly 3,000 fossilized bone and teeth specimens found in various museums, including the Natural History Museum of Los Angeles County (NHM) and UC Berkeley’s Museum of Paleontology (UCMP), have been scrutinized, and the researchers also cut out a meter-square section of the bone bed, complete with the rock layers above and below.
“If you look at the geology of this fossil bed, it’s not intuitive how it formed,” says Nicholas Pyenson, a former UC Berkeley graduate student who is now a post-doctoral fellow at the University of British Columbia. “We really put together all lines of evidence, with the fossil evidence being a big part of it, to obtain a snapshot of that period of time.”
The existence of a 700,000-year window through which we can catch a glimpse of the past is naturally magnificent news for anyone interested in evolution and Earth’s history.
When the Central Valley was a sea
When the Sharktooth Hill Bone Bed formed between 15,900,000 and 15,200,000 years ago, the climate was warming up, ice was melting and the sea level was much higher than today. What is today California’s Central Valley was an inland sea with the emerging Sierra Nevada as its shoreline.
After closely examining the geology of the Sharktooth Hill area, the research team was able to confirm that it had once been a submerged shelf inside a large embayment, directly opposite a wide opening to the sea.
Several feet of mudstone interlaced with shrimp burrows is present under the bone bed, which is typical of ocean floor sediment several hundred to several thousand feet below the surface. Inside the bone bed, most of the bones have separated joints, indicating that they have been scattered by currents.
“The bones look a bit rotten, as if they lay on the seafloor for a long time and were
abraded by water with sand in it“, says UC Berkeley integrative biology professor Jere Lipps.
Many bones also had manganese nodules and growths on them, something which can form when bones sit in sea water for a long time before they are covered by sediment. According to the team, the most likely explanation for this is that the bones have lain exposed on the ocean floor for 100,000 to 700,000 years while currents have carried sediment around the bone bed. The prevailing climatic conditions at the time have made it possible for the bones to accumulate in a big and shifting pile at the bottom of the sea.
“These animals were dying over the whole area, but no sediment deposition was going on, possibly related to rising sea levels that snuffed out silt and sand deposition or restricted it to the very near-shore environment,” says Pyenson. “Once sea level started going down, then more sediment began to erode from near shore.”
The team discards the breeding-ground hypothesis due to the scarcity of remains from young and juvenile animals. Hungry Megalodon sharks being the main contributors to the bone pile is also unlikely, since few bones bear any marks of shark bites. If the bone bed was the result of mass-death caused by an erupting volcano the absence of volcanic ash in the bed would be very difficult to explain, and the presence of land animals like horses and tapirs that must have washed out to sea make the red-tide hypothesis equally thin.
Amazing remains from the past
The Sharktooth Hill Bone Bed covers nearly 50 square miles just outside and northeast of Bakersfield in California and is one of the richest and most extensive marine deposits of bones in the world. Studied parts of the bone bed average 200 bones per square meter, most of them larger bones. Ten miles of the bed is exposed, and the uppermost part of the bed contains complete, articulated skeletons of whales and seals.
Within the bone bed, scientists have found bones from many species that are now extinct and the bed provides us with invaluable information about the evolutionary history of whales, seals, dolphins, and other marine mammals, as well as of turtles, seabirds and fish. Sharktooth Hill is naturally the sight of some impressive shark findings too, including shark teeth as big as a hand and weighing a pound each.
A small portion of the bone bed was added to the National Natural Landmark registry in 1976 but the rest is in dire need of protection.
A collaborative effort
The research team, who’s study will be published in the June 2009 issue of the journal
Geology, consisted of:
– UC Berkeley integrative biology professor Jere Lipps, who is also a faculty curator in UC Berkeley’s Museum of Paleontology.
– Nicholas Pyenson, a UC Berkeley Ph.D who is now a post-doctoral fellow at the University of British Columbia.
– Randall B. Irmis, a UC Berkeley Ph.D who is now an assistant professor of geology and geophysics at the University of Utah.
– Lawrence G. Barnes, Samuel A. McLeod, and Edward D. Mitchell Jr., three UC Berkeley Ph.D’s who are now with the Department of Vertebrate Paleontology at the Natural History Museum of Los Angeles County.
Basking sharks have surprised researchers by leaving the cold waters of the north Atlantic during fall and head down to Bahamas and the Caribbean.
“While commonly sighted in surface waters during summer and autumn months, the disappearance of basking sharks during winter has been a great source of debate ever since an article in 1954 suggested that they hibernate on the ocean floor during this time,” said Gregory Skomal of Massachusetts Marine Fisheries. “Some 50 years later, we have helped to solve the mystery while completely re-defining the known distribution of this species.”
Basking Shark
Basking sharks are notoriously difficult to study for several reasons. They feed exclusively on plankton which means you can’t catch them using traditional rod-and-reel methods and they disappear down to deep waters for extended periods of time. During the part of the year when they do stay close to the surface, they are only found in cool waters teaming with plankton where the underwater visibility is close to zilch.
This situation has led to a lot of speculation about their life style and where they actually spend the winters. Despite being the second largest fish in the world, the basking shark is remarkably elusive and mysterious.
What finally solved the puzzle was the aid of new satellite-based tagging technology and a novel geolocation system which made it possible to track the basking whales as they commenced their annual migration. Data sent out from the tags unveiled that basking sharks migrates to warm tropical waters in fall. Their migrations have been able to go undetected until know since the sharks travel at depths of 200 to 1,000 meters and sometimes remain at those depths for weeks or even months at a time.
Skomal said he and his fellow researchers were absolutely surprised when they first received a signal from the tagged sharks coming from the tropical waters of the western Atlantic, since virtually everyone assumed basking sharks to be cool-water dwellers found in temperate regions only.
This new breakthrough show just how little we still know about even the largest marine animals inhabiting the world’s oceans. The basking shark can reach a length of 10 metres and weigh up to seven metric tons, yet it has managed to spend every summer in the Caribbean without anyone noticing it.
You can find more information in the report published on May 7 in Current Biology.
A recent study on intersex abnormalities in fish living in the Potomac River watershed carried out by researchers from the U.S. Fish and Wildlife Service and the U.S. Geological Survey showed that at least 82 percent of male smallmouth bass and in 23 percent of the largemouth bass had immature female germ cells (oocytes) in their reproductive organs. This number is even larger than anticipated.
This type of intersex indicates that the fish has been exposed to estrogens or chemicals that mimic the activity of natural hormones. The condition is believed to be caused by hormone-like chemicals, so called endocrine disruptors, found in medicines and a variety of consumer products. Earlier, researchers suspected that the contaminants were entering the Potomac from the wastewater treatment plants that discharge into it, but further sampling showed that the problem existed in areas located upstream from sewage plants as well. Officials are now investigating if multiple chemicals, and not just those from sewage plants, may be responsible. A larger study that includes the entire Potomac River and other East Coast rivers will be launched to find out how widespread the problem actually is.
“At the moment we don’t know the ecological implications of this condition and it could potentially affect the reproductive capability of important sport fish species in the watershed,” said Leopoldo Miranda, Supervisor of the U.S. Fish and Wildlife Service’s Chesapeake Bay Field Office.
The Potomac River is the fourth largest river along the Atlantic coast of the USA (in terms of area), with a length of approximately 665 km (383 statute miles) and a drainage area of roughly 38,000 km² (14,700 square miles). It flows into the Chesapeake Bay along the mid-Atlantic coast of the U.S. The river is shared by West Virginia, Maryland, Virginia, and District of Columbia, and all of Washington, D.C., the nation’s capital city, lies within the Potomac watershed.
More information is available in the Intersex fact sheet released by the U.S. Fish and Wildlife Service’s Chesapeake Bay Field Office.
New research has revealed that the tapetail, bignose and whalefish are in fact all the same fish.
For decades, three different names have been used for three very different looking underwater creatures: the Tapetail, the Bignose and the Whalefish. A team of seven scientists*, including Smithsonian curator Dr Dave Johnson, has now discovered that these three fishes are in fact part of the same family.
After studying the body structures of the tapetails (Mirapinnidae), bignose fish (Megalomycteridae) and whalefish (Cetomimidae) and taking advantage of modern DNA-analysis, the team realized that the three are actually the larvae, male and female, respectively, of a single fish family – Cetomimidae (also known as Flabby whalefish).
“This is an incredibly significant and exciting finding,” says Johnson. “For decades scientists have wondered why all tapetails were sexually immature, all bignose fishes were males and all whalefishes were females and had no known larval stages. The answer to part of that question was right under our noses all along—the specimens of tapetails and bignose fishes that were used to describe their original families included transitional forms—we just needed to study them more carefully.”
If you wish to find out more, the article “Deep-sea mystery solved: astonishing larval transformations and extreme sexual dimorphism unite three fish families” has been published in the journal Biology Letters by the Royal Society, London.
http://publishing.royalsociety.org/
http://journals.royalsociety.org/content/g06648352k5m1562/
* The seven scientists behind the discovery are:
G.David Johnson, Division of Fishes, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
John R. Paxton, Ichthyology, Australian Museum, Sydney, New South Wales 2010, Australia
Tracey T. Sutton, Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA
Takashi P. Satoh, Marine Bioscience, Ocean Research Institute, University of Tokyo, Nakano-ku, Tokyo 164-8639, Japan
Tetsuya Sado, Zoology, Natural History Museum and Institute, Chuo-ku, Chiba 266-8682, Japan
Mutsumi Nishida, Marine Bioscience, Ocean Research Institute, University of Tokyo, Nakano-ku, Tokyo 164-8639, Japan
Masaki Miya, Zoology, Natural History Museum and Institute, Chuo-ku, Chiba 266-8682, Japan
The Bolivian Amazon (picture by: Thomas van den Berk)
The Bolivian River Dolphin has finally been graced with the acknowledgement that it is, in fact, a separate species from its close relative, the Amazon River Dolphin. Lighter in color, smaller, and having more teeth, are only a few of the things that separate this newly named species apart from the others. It is able to move its head side to side; something other dolphins can not do, to manuever through flooded forests during heavy rains and flooding.
Unfortunately the Bolivian River Dolphin, like all dolphins, is facing a questionable future do to pollution, fishing, industrialization, damming, and deforestation. 1,500 dolphins are caught and killed each year by fishermen to be used as bait. Hopefully, unlike the newly extinct Yangtze River dolphin in China, the Bolivian River Dolphin will be able to saved by awareness and conservation efforts.
for a complete article on the Bolivian River Dolphins visit: http://www.telegraph.co.uk/earth/main.jhtml?xml=/earth/2008/04/29/eadolph129.xml
Alligator Snapping Turtles carry a reputation of fear, weighing in at over 200 lbs (90 kg) and packing a bite that earned the word Alligator in its name. Perhaps, the last place you would expect to find such a fearsome reptile, would be in the bustling city of New York. That is unless, like 45lb fluffy, you were housed there to protect the illegal drugs of your owner. Fluffy was rescued during a Long Island drug raid. Since his rescue, he has been relocated to a New England Aquarium as an attraction for their new Killer Instincts exhibit.
So, while Fluffy’s owner may be facing some hard time in the big house, Fluffy will be living a care free life in a turtle appropriate and drug-free environment. Congratulations Fluffy.
For more information on Alligator Snapping Turtles and a picture of Fluffy visit: http://www.practicalfishkeeping.co.uk/pfk/pages/item.php?news=1669
picture provided by Creative Commons at http://creativecommons.org/licenses/by/2.5/.
(disclaimer: Creative Commons has no affiliation to the AC or the views or thoughts published in this article.)
A new species of Tetra has been found in the drainage from the Portuguese River in Venezuela. The scientific name Hyphessobrycon otrynus. Ortynus is Greek for “spur,” which describes, the large bone spur-like hooks that curve from each side of the anal fin on the adult males of the species. Further information on this new species is lacking, but will be provided as research is gathered.
For a free excerpt from the Zootaxa 1747: 61-68 (April 2008) by RICARDO C. BENINE & GUILHERME A. M. LOPES (Brazil) That describes a little aboutH. Ortynus visit: http://www.mapress.com/zootaxa/2008/f/z01747p068f.pdf