Specimens of the invasive Blue catfish (Ictalurus furcatus) have now grown large enough to reach the top of the food chain in James River, Virginia. A catfish weighing 102 lbs (46 kg) was caught from the river not long ago; the largest caught freshwater fish ever to be reported from Virginian waters.
30 years ago, Blue catfish was deliberately introduced to this U.S. river as a game fish. During recent years, the catfish population has grown explosively while many other fish species have decreased. An eight year old Blue catfish normally weigh a mere 4 lbs (1.8 kg), but as soon as it gets large enough to start catching other fish and devouring fully grown crabs, it begins putting on weight at a rapid pace and can gain as much as 10 lbs (4.5 kg) a year.
Blue Catfish – Ictalurus furcatus. Copyright www.jjphoto.dk
According to Bob Greenlee, a biologist with the state Department of Game and Inland Fisheries, scientists doing sampling used to get around 1,500 catfish in an hour in this river in the 1990s. Today, this number has increased to 6,000. “We have an invasive species that is taking over the ecosystem,” says Rob Latour, a marine biologist with the Virginia Institute of Marine Science at the College of William and Mary.
Norwegian fisheries regulators have banned all fishing of the critically endangered European eel starting in 2010 and cut 2009 catch quotas by 80 percent. The Norwegian Ministry of Fisheries also has announced that all recreational fishing of European eels shall stop on July 1st.
The European eel (Anguilla anguilla) is listed as critically endangered in Norway and on the IUCN Red List of Threatened Species. As early as 1999, the International Council for the Exploration of the Seas (ICES) warned fishery authorities about how the European eel stock was outside safe biological limits and that the fishery was unsustainable.
”The Minister of Fisheries is making an important, and the only right choice, and is showing international leadership in fisheries management,” said WWF-Norway CEO Rasmus Hansson in a response to the new regulation. “Norway’s Fisheries Minister, Helga Pedersen, has used every occasion to point out that Norway is the best in the world on fisheries management, and by making bold moves like this they have probably earned the title.”
WWF now hopes that the Norwegian decision will influence the European Union and its member states to do their part in protecting the European eel. As of today, eel fishing is allowed within the EU despite the grave condition of the European stock.
As reported earlier, fish populations may adapt and change in response to significant fishing pressure. Researchers are now suggesting that the genetic make-up of cod in the Atlantic Ocean might be changing, since cods genetically predisposition to seek out shallower waters are more likely to end up in nets or on fishing lines, while deep-dwellers are more likely to survive and reproduce.
If the current over-fishing of shallow living cod is not put to an end, evolutionary biologist Einar Árnason and his colleagues believes the genetic variant found in shallow-living cod will be lost all together. If the deep-water cods do not spread into the shallows, and Árnason doubts they will since they are adapted to deep water conditions, the shallows may be become devoid of cod within the next 10 years. This will decrease the size of the total cod population and will also force the fishing industry to either give up cod fishing altogether or switch to expensive deep-water trawling.
Árnason and his colleagues have studied cod populations off the coast of Iceland, where fish stocks are still in fairly decent condition compared to the severely depleted populations found in the western Atlantic. In their study, the researchers examined how the genotypes of Icelandic cod have changed between 1994 and 2003.
It was already known that cod living in the Icelandic shallows have a different variant of the pantophysin I gene than the cods found at much larger depts. In their study, Árnason and his colleagues found that the shallow-water variant of pantophysin I is becoming increasingly rare; a change which they attribute to the fact that most Icelandic cod fishers work in shallow waters near the coastline using lines and nets instead of carrying out deep-water trawling.
Árnason and his team also found that Icelandic cod are reaching sexual maturity at a younger age and at a smaller size than before. This is discovery is a chilling revelation for Icelandic fishermen and conservationalists alike, since that was exactly what happened in Newfoundland waters before that cod population crashed completely.
The study has been published in the journal PLoS ONE
The inclination to end up stuck on a hook seems to be a heritable trait in bass, according to a study published in a recent issue of the Transactions of the American Fisheries Society.
The study, which was carried out by researchers DP Philipp, SJ Cooke, JE Claussen, JB Koppelman, CD Suski, and DP Burkett, focused on Ridge Lake, an Illinois lake where catch-and-release fishing has been enforced and strictly regulated for decades. Each caught fish has been measured, tagged and then released back into the wild.
Picture by: Clinton & Charles Robertson from Del Rio, Texas & San Marcos, TX, USA
David Philipp and coauthors commenced their study in 1977, checking the prevalence of Largemouth bass (Micropterus salmoides) on the hooks of fishermen. After four years, the experimental lake was drained and 1,785 fish were collected. When checking the tags, Philipp and his team found that roughly 15 percent of the Largemouth bass population consisted of specimens that had never been caught. They also found out that certain other bass specimens had been caught over and over again.
To take the study one step further, the research team collected never caught bass specimens (so called Low Vulnerability, LV, specimens) and raised a line of LV offspring in separate brood ponds. Likewise, the team collected bass specimens caught at least four times (High Vulnerability, HV, specimens) and placed them in their own brooding ponds to create a HV line.
The first generation (F1) offspring from both lines where then marked and placed together in the same pond. During the summer season, anglers where allowed to visit the pond and practise catch-and-release, and records where kept of the number of times each fish was caught.
As the summer came to an end, HV fish caught three or more times where used to create a new line of HV offspring, while LV fish caught no more than once became the parents of a new LV line.
The second generation (F2) offspring went through the same procedure as their parents; they were market, released into the same pond, and subjected to anglers throughout the summer. In fall, scientists gathered the fish that had been caught at least three times or no more than once and placed them in separate ponds to create a third generation (F3) HV and LV fish.
A following series of controlled fishing experiments eventually showed that the vulnerability to angling of the HV line was greater than that of the LV line, and that the differences observed between the two lines increased across later generations.
If this is true not only for bass but for other fish species as well, heavy hook-and-line angling pressure in lakes and rivers may cause evolutionary changes in the fish populations found in such lakes. Hence, a lake visited by a lot of anglers each year may eventually develop fish populations highly suspicious of the fishermen’s lure.
More information can be found in the paper published in Transactions of the American Fisheries Society: Philipp, DP, SJ Cooke, JE Claussen, JB Koppelman, CD Suski and
DP Burkett (2009) Selection for vulnerability to angling in Largemouth Bass. Transactions of the American Fisheries Society 138, pp. 189–199.
A group of scientists from the Catalyst One expedition has discovered three previously unknown coral reefs 35 miles of the coast of Florida. The coral reefs consist mainly of Lophelia coral and are located at a depth of 450 metres (1475 feet).
Lophelia pertusa is a cold-water coral famous for its lack of zooxanthellae. The well known coral reefs found in warm, shallow waters – such as the Great Barrier Reef – consist of reef building corals that utilize energy from the sun by forming symbiotic relationship with photosynthesising algae. Lophelia pertusa on the other hand lives at great depths where there isn’t enough sunlight to sustain photosynthesising creatures, and survives by feeding on plankton.
The deep-sea reef habitat formed by Lophelia pertusa is important for a long row of deep water species, such as lanternfish, hatchetfish, conger eels and various molluscs, amphipods, and brittle stars. The reefs that we see today are extremely old, since Lophelia reefs typically grow no more than 1 mm per year. Unfortunately, these deep reefs are today being harmed by trawling and oil extraction.
The Catalyst One expedition will submit its newly acquired information to the South Atlantic Fisheries Management Council to provide further data for the proposed Deep Coral Habitat Area of Particular Concern (HAPC).
The Catalyst One expedition is a collaboration between the Waitt Institute for Discovery, the Harbor Branch Oceanographic Institute at Florida Atlantic University, and Woods Hole Oceanographic Institute. It combines the scientific expertise of Harbor Branch’s senior research professor, John Reed, with Woods Hole’s high-tech operations skills and Waitt Institute’s modern autonomous underwater vehicles (AUVs).
In order to reach these great depths and efficiently explore substantial areas, the expedition used REMUS 6000 AUV vehicles capable of carrying two kinds of sonar and a camera. With this type of equipment, each mission can last for up to 18 hours and provides the researchers with mosaic pictures of the bottom, pictures that can then be pieced together to form a detailed, high-definition map.
“Rarely do scientific expeditions produce solid results this quickly,” says Dr Shirley Pomponi, executive director of Harbor Branch. “This is a big win for the resource managers tasked with protecting these reefs and proof that cutting edge technology combined with the seamless teamwork of the three organisations involved in Catalyst One can accelerate the pace of discovery.”
You can find more information about the Catalyst program at the Waitt Institute for Discovery.